Bounding the coefficients of the characteristic polynomials of simple binary matroids
نویسندگان
چکیده
We give an upper bound and a class of lower bounds on the coefficients of the characteristic polynomial of a simple binary matroid. This generalizes the corresponding bounds for graphic matroids of Li and Tian (1978) [3], as well as a matroid lower bound of Björner (1980) [1] for simple binary matroids. As the flow polynomial of a graph G is the characteristic polynomial of the dual matroid M(G), the bound applies to flow polynomials. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Binary matroids with no 4-spike minors
For a simple binary matroid M having no n-spike minor, we examine the problem of bounding |E(M)| as a function of its rank r(M) and circumference c(M). In particular, we show that |E(M)| ≤ min { r(M)(r(M)+3) 2 , c(M)r(M) } for any simple, binary matroid M having no 4-spike minor. As a consequence, the same bound applies to simple, binary matroids having no AG(3,2)-minor.
متن کاملSignal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کاملLog-concavity of characteristic polynomials and the Bergman fan of matroids
In a recent paper, the first author proved the log-concavity of the coefficients of the characteristic polynomial of a matroid realizable over a field of characteristic 0, answering a long-standing conjecture of Read in graph theory. We extend the proof to all realizable matroids, making progress towards a more general conjecture of Rota–Heron–Welsh. Our proof follows from an identification of ...
متن کاملLattice path matroids: enumerative aspects and Tutte polynomials
Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroid...
متن کاملLower Bounds for h-Vectors ofk-CM, Independence, and Broken Circuit Complexes
We present a number of lower bounds for the h–vectors of k–CM, broken circuit and independence complexes. These lead to bounds on the coefficients of the characteristic and reliability polynomials of matroids. The main techniques are the use of series and parallel constructions on matroids and the short simplicial h–vector for pure complexes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 312 شماره
صفحات -
تاریخ انتشار 2012